

■ AXIAL-WELLENDICHTRING

Axial-Wellendichtringe werden vorwiegend als Schutzdichtungen für Wälzlager verwendet. Aus diesen Grund wurden ihre Abmessungen den Lagermaßen angepasst. Wenn gegen Flüssigkeitsaustritt abzudichten ist, sollte eine Bauform mit innenliegender Dichtlippe gewählt werden.

Die Ausführung mit außenliegender Dichtlippe eignet sich für die Abdichtung von Fett sowie zum Schutz vor Schmutzeintritt.

In beiden Fällen erhält die elastomere Dichtlippe ihre Vorspannung gegen die Lauffläche durch eine Sternfeder. Die lineare Kompressionskraft ist um ca. 1/3 geringer als bei einem Radial-Wellendichtring, bleibt aber während des Betriebes konstant. Im Gegensatz zu Radial-Wellendichtringen verringert sich die Anpresskraft durch thermische Volumenzunahme nicht und der größere Durchmesser der gleitenden Dichtkante wirkt sich nur unerheblich auf die Reibung aus.

■ Allgemeine Beschreibung

Axial-Wellendichtungen sind einbaufertige Dichtelemente zur Abdichtung von Wellen, Achsen und Lagern.

Die Axial-Wellendichtung besteht aus einer gummielastischen Manschette und einem einvulkanisierten metallischen Versteifungsring. An der Manschette ist axial eine Dichtlippe angeordnet. Die Dichtlippe ist konisch ausgeführt, um eine geringe Berührungsbreite zu erhalten. Reibung, Erwärmung und Verschleiß werden dadurch wesentlich verringert. Durch die stabile Formgebung wird eine einwandfreie Anlage gewährleistet. Als Vorspannelement dient eine metallische Sternfeder (Bild 82).

Merkmale

Axial-Wellendichtungen werden axial an die Gegenlauffläche angefedert. Dadurch benötigt die Dichtung wenig Einbauraum und kann platzsparend und wirkungsvoll bei engen Bauräumen verwendet werden.

Wirkungsweise

Die dynamische Abdichtung erfolgt in axialer Richtung gegen eine Lauffläche, die rechtwinklig zur Wellenachse angeordnet sein muss. Die Dichtmanschette und die auf den Rücken der Dichtlippe wirkende Sternfeder sorgen für einen gleichmäßigen und schwingungsfreien Anpressdruck.

Die Fliehkraft von durch die Welle beschleunigten Flüssigkeiten verstärkt die Dichtwirkung.

Die statische Abdichtung an der Welle (Bauform A) oder in der Aufnahmebohrung (Bauform I) erfolgt durch eine entsprechende Preßsitzzugabe an der Manschette.

Vorteile

- wenig Reibung, geringe Erwärmung
- kein Wellenverschleiß
- kleiner Einbauraum
- einfache Montage
- hohe Wärmebeständigkeit
- hohe Gleitgeschwindigkeit
- passend für viele Wälzlager-Reihen
- lange Lebensdauer

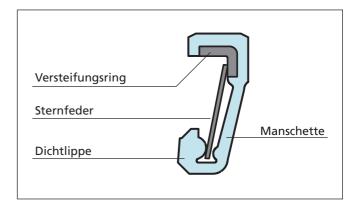


Bild 82 Axial-Wellendichtung

Standard-Ausführungen

Bauform I

Axial-Wellendichtung mit innenliegender Dichtlippe, vorwiegend zur Abdichtung von Flüssigkeiten (Bild 83).

Die Dichtung wird hauptsächlich statisch im Gehäuse angeordnet mit der Dichtlippe zur drehenden Welle. Die Dichtung soll dabei immer flüssigkeitsberührt eingebaut werden. Trockenlauf ist zu verhindern.

Die Grenzwerte für die Drehzahl, für den Druck und die Anpresskraft der Dichtlippe finden Sie in Tabelle LVII und Tabelle LVIII.

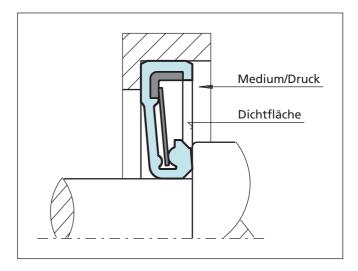


Bild 83 Bauform I, innendichtend

Bauform A

Axial-Wellendichtung mit außenliegender Dichtlippe zur Abdichtung von Fett (Bild 84).

Bei geringen Umfangsgeschwindigkeiten und sehr guter, möglichst geschliffener oder geläppter Gegenlauffläche können auch Flüssigkeiten abgedichtet werden.

Die Grenzwerte für die Drehzahl, für den Druck und die Anpresskraft der Dichtlippe finden Sie in Tabelle LIX und Tabelle LX.

Bei Flüssigkeitsabdichtung muss die maximal zulässige Drehzahl auf ein Drittel des Tabellenwertes herabgesetzt werden.

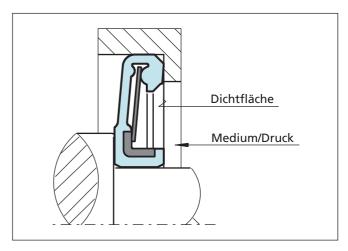


Bild 84 Bauform A, außendichtend

■ Anwendungen

Einsatzbereiche

Axial-Wellendichtungen werden zur Abdichtung von Wellen, Achsen und Lagern einsetzt. Sie haben die Aufgabe, das Eindringen von Staub, Schmutz, Spritzwasser etc. und ein Austreten von Flüssigkeit oder Schmiermittel aus dem abzudichtenden Raum zu verhindern.

Die Einsatzbereiche der einzelnen Bauformen sind sehr unterschiedlich und im wesentlichen von der Art des Schmiermittels und den Betriebsbedingungen abhängig.

Technische Daten

Betriebsdruck: drucklos

Geschwindigkeit: bis 30,0 m/s, je nach

Bauform und Elastomerwerkstoff

Temperatur: -30 °C bis +200 °C, je nach

Elastomerwerkstoff, siehe Tabelle LVI

Auf Anfrage bieten wir spezielle Werkstoffe bis -40 °C an.

Medien

Mineralische und synthetische Öle und Fette, Wasser, Kohlenwasserstoffe, Säuren, Laugen etc. (abhängig vom Elastomerwerkstoff).

Umfangsgeschwindigkeit und Drehzahl

Mit Rücksicht auf die Erwärmung und den Verschleiß der Dichtlippe muss die Umfangsgeschwindigkeit entsprechend der verwendeten Elastomerqualität begrenzt werden. Die Umfangsgeschwindigkeit an der Dichtlippe darf nachstehende Werte nicht überschreiten:

Bauform I: bei NBR 20 m/s bei FKM 30 m/s

Bauform A: bei NBR 10 m/s bei FKM 15 m/s

Diese Werte gelten bei ausreichender Schmierung und Wärmeabführung an der Dichtfläche. Sind diese Voraussetzungen nicht gegeben, so müssen obenstehende Grenzwerte dem Anwendungsfall entsprechend verringert werden.

Bild 85 zeigt die max. Drehzahl n in Abhängigkeit vom mittleren Dichtlippendurchmesser dm für den Elastomerwerkstoff Acrylnitril-Butadien-Kautschuk (NBR).

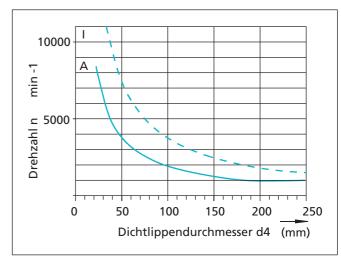


Bild 85 Maximale Drehzahl n in Abhängigkeit vom Dichtlippendurchmesser d4 für Bauform I und A

■ Werkstoffe

Tabelle LVI zeigt die lieferbaren Standardwerkstoffe auf. Bei der Auswahl der Werkstoffe für die Elastomer- und Metallteile werden die an Temperatur- und Medienbeständigkeit gestellten Anforderungen berücksichtigt.

Tabelle LVI Werkstoffe

	Standard Materials	Material code
Elastomere Manschette und Dichtlippe	Acrylnitril-Butadien-Kautschuk (NBR) 75 Shore A Farbe: schwarz/anthrazit Temperaturbereich: - 30 °C bis + 120 °C	NCM_
	Fluorkautschuk (FKM) 75 Shore A Farbe: anthrazit (Kennzeichnung: gelber Punkt) Temperaturbereich: - 25 °C bis + 200 °C	VCM_
Metallteile Versteifungsring + Sternfeder	Versteifungsring: Stahl 1.0338/St 14.03 Sternfeder: Federstahl 1.0605/C75	M

Sonderwerkstoffe stehen auf Anfrage zur Verfügung.

Konstruktionshinweise

Für die Konstruktion der Dichtstelle sind die Angaben zu den einzelnen Ausführungen (Bild 83 und Bild 84) zu beachten.

Als Gegenlauffläche für die Dichtlippe eignet sich u. a. die gehärtete Stirnseite eines Wälzlagers. Das Lager darf auf der als Gegenlauffläche verwendeten Seite keine Beschriftungen aufweisen. Gegenlaufflächen können auch gebildet werden durch z. B. einen Wellenbund, Stützscheiben u. a.

Die Dichtflächen können aus Stahl, Messing, Bronze, Aluminium-Legierungen und Keramik sein. Die Gegenlauffläche muss sauber und glatt sein, sie darf keine Spiralrillen oder Kratzer aufweisen. Oberflächenhärte für Stahl HRC > 40, für andere Werkstoffe auch darunter.

Oberflächenrauhigkeiten

Gegenlauffläche: bei Ölschmierung:

Rmax < 2,5 mm

 $(Ra \le 1.0 \mu m, Rz < 1.6 mm)$

bei Fettschmierung: Rmax < 6,3 mm

 $(Ra \le 2.5 \mu m, Rz < 4.0 mm)$

Der Radialschlag der Dichtfläche hat auf die Abdichtung kaum einen Einfluss.

Der Axialschlag darf - auf die zulässige Drehzahl bezogen - bei Abdichtung gegen Öl bis 0,03 mm und bei Fett bis 0,05 mm betragen.

Montagehinweise

Vor der Montage der Dichtung ist die Dichtfläche zu reinigen und leicht einzufetten, um den Verschleiß während der Einlaufphase so gering wie möglich zu halten.

Bei den meisten Einbaufällen erfolgt eine sogenannte "Blindmontage", d. h. das gleichmäßige Anliegen der Dichtlippe auf der Gegenlauffläche kann visuell nicht mehr überprüft werden. Die Dichtung ist parallel zur Dichtfläche zu installieren, wobei zu beachten ist, dass die Dichtlippe weder beschädigt noch verformt werden darf. Dies wird am sichersten erreicht, wenn die Dichtung unter Verwendung einer Montagehilfe gegen einen Sitz in das Gehäuse eingebaut wird.

Die beste Abdichtung wird erreicht, wenn die Dicht- oder Lauffläche mit der Stirnfläche der Dichtung eine Linie bildet

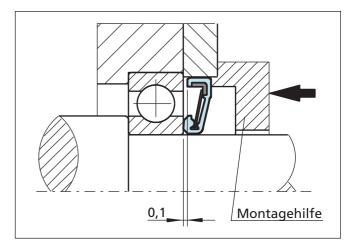
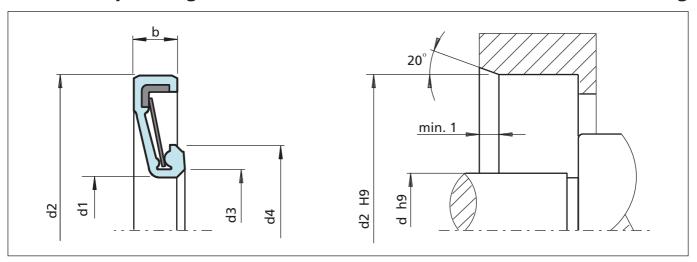
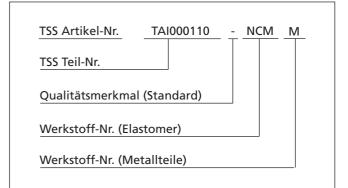


Bild 86 Einbau der Axial-Wellendichtung mit Montagehilfe

■ Einbauempfehlung, Bauform I, innendichtend, für Öl- und Fettabdichtung




Bild 87 Einbauzeichnung

Bestellbeispiel

Axial-Wellendichtung, Bauform I Wellendurchmesser d= 50,0 mm geeignet für Wälzlager Nr. 6010

Werkstoffe: aus Tabelle LVI, 202:

Manschette und Dichtlippe: NBR
Werkstoff-Code: NCM
Versteifungsring 1.0338
+ Sternfeder 1.0605
Werkstoff-Code: M

Tabelle LVII Vorzugsreihe

Welle	lle Abmessungen						zul. Drehzahl Fa* zul. Zuordnung zu den Wälzlager-Reih					-Reihen	TSS Teil-Nr.		
d	d ₁	d_2	d ₃	d ₄	b	NBR	FKM	[N]	[Pa]	6000	6300	6400	4200	4300	
10	11	24	12,0	13,0	4,0	25400	38000	1,8	9000	6000	6300	-	-	-	TAI000100
12	13	26	14,0	16,0	4,0	23800	35700	2,0	9400	6001	-	-	4200	-	TAI000101
15	16	30	17,0	20,0	4,5	19200	28800	2,5	9500	6002	-	-	-	4301	TAI000102
17	18	33	19,0	22,0	4,5	17500	26200	3,0	8800	6003	6302	-	-	-	TAI000103
20	22	39	23,0	26,0	4,5	14700	22000	3,5	6900	6004	6304	6403	-	-	TAI000104
25	27	44	27,5	31,0	4,5	13000	19500	3,8	6150	6005	-	6404	-	-	TAI000105
30	32	50	33,0	36,0	5,0	10600	15900	4,0	5800	6006	-	6405	-	-	TAI000106
35	37	56	38,0	41,0	5,0	9300	13900	4,5	6100	6007	6306	6406	4206	-	TAI000107
40	42	62	44,0	47,0	5,5	8100	12000	5,5	6550	6008	6307	6407	4207	-	TAI000108

^{*} Fa = Anpresskraft der Dichtlippe

Welle		Ab	messu	ngen			ehzahl n ⁻¹]	Fa*	zul. Druck	Zuordnung zu den Wälzlager-Reihen				TSS Teil-Nr.	
d	d ₁	d ₂	d ₃	d_4	b	NBR	FKM	[N]	[Pa]	6000	6300	6400	4200	4300	
45	47	70	49,0	53,0	5,5	7200	10800	6,5	5200	6009	6308	6408	4208	-	TAI000109
50	52	75	55,5	59,0	6,0	6600	9900	7,0	4750	6010	6309	6409	4209	-	TAI000110
55	58	83	61,5	65,5	6,0	6000	9000	7,5	4450	6011	6310	-	4210	-	TAI000111
60	61	89	65,0	69,0	6,5	5500	8200	8,0	3800	6012	6311	6410	4211	-	TAI000112
65	67	94	70,0	74,0	7,0	5200	7800	9,0	4600	6013	6312	6411	4212	-	TAI000113
70	73	104	74,0	78,0	7,5	4800	7200	11,0	3800	6014	6313	6412	4213	-	TAI000114
75	78	109	80,0	84,0	7,5	4500	6700	12,0	4350	6015	6314	6413	4214	-	TAI000115
80	84	119	85,0	89,0	8,0	4300	6400	13,0	2900	6016	6315	6414	4215	-	TAI000116
85	87	124	90,0	94,0	8,0	4000	6000	14,5	3500	6017	6316	6414	4216	-	TAI000117
90	93	132	96,0	101,0	8,5	3800	5700	16,0	3050	6018	6317	6415/16	4217	-	TAI000118
95	98	137	100,0	104,5	8,5	3600	5400	17,0	3250	6019	6318	6415/16	-	-	TAI000119
100	101	142	105,0	110,0	8,5	3400	5100	18,0	3400	6020	6319	6416	4218/19	-	TAI000120
10	11	26	13,0	15,5	4,5	24600	36900	1,8	9700	6200	-	-	-	-	TAI000200
12	13	28	15,0	17,5	4,5	22200	33300	2,0	10700	6201	6300/01	-	4201	4300	TAI000201
15	16	31	18,0	21,0	4,5	18200	27300	3,0	12800	6202	6302	-	4202	-	TAI000202
17	18	36	21,0	23,0	5,0	16600	24900	3,8	8100	6203	6303	-	4203	4302.0	TAI000203
20	21	41	23,0	26,0	5,5	14700	22000	4,2	7400	6204	6304	6403	4204	4303	TAI000204
25	26	46	28,0	30,0	5,5	12700	19000	4,3	6400	6205	-	6403	-	4304	TAI000205
30	32	56	34,5	37,5	6,0	10300	15400	4,6	4900	6206	-	6405	-	4305	TAI000206
35	37	65	41,0	44,0	6,5	8900	13300	5,0	3300	6207	6306/07	6405/06	-	4306	TAI000207
40	42	73	46,5	50,0	6,5	7600	11400	6,0	3200	6208	6308	6407	-	4307	TAI000208
45	47	78	51,5	56,0	6,5	7000	10500	6,5	3000	6209	6308/09	6407/08	-	4308	TAI000209
50	53	83	56,5	59,5	6,5	6400	9600	7,0	3000	6210	6309	6408/9	-	4309	TAI000210
55	58	90	61,0	65,0	7,0	5900	8800	7,5	2750	6211	6310	6409/10	-	4310	TAI000211
60	63	100	65,5	69,0	8,0	5500	8200	8,0	2100	6212	6311	6410/11	-	4311	TAI000212
65	68	110	72,0	77,0	8,5	5000	7500	9,0	2000	6213	6312	6411/12	-	-	TAI000213
70	72	115	74,0	79,0	8,5	4800	7200	10,5	2000	6214	6313	6411/12	-	4312	TAI000214
75	78	120	83,0	88,0	8,5	4400	6600	11,0	2100	6215	6313/14	6413/14	-	4313	TAI000215
80	84	128	90,0	94,0	9,0	4100	6100	13,0	2400	6216	6314/15	6414	-	4314	TAI000216
85	87	138	91,0	96,0	9,5	3900	5800	14,5	2100	6217	6315/16	6414/15	-	4315	TAI000217
90	94	148	96,5	101,5	10,0	3700	5500	16,5	2000	6218	6316	6415/16	-	-	TAI000218
95	98	158	103,0	108,0	10,0	3500	5200	17,0	2000	6219	6317/18	6415/16	-	4316	TAI000219
100	104	168	109,0	114,0	10,5	3300	4900	19,0	2100	6220	6318	6416	-	4318	TAI000220

^{*} Fa = Anpresskraft der Dichtlippe

Tabelle LVIII Sondergrößen für Bauform I

Welle		Al	bmessur	ng			rehzahl in ⁻¹]	Fa*	zul. Druck	TSS Teil-Nr.
d	d ₁	d ₂	d ₃	d_4	b	NBR	FKM	[N]	[Pa]	
6	6,5	17	7,5	9,0	3,5	45000	67000	5,0	43500	TAI000006
7	7,5	17	8,5	10,6	3,5	40000	60000	4,5	48000	TAI000007
8	8,5	20	9,5	11,2	4,0	35000	52000	4,0	35600	TAI000008
9	9,6	22	11,0	13,0	4,0	30000	45000	4,5	27700	TAI000009
23	24,5	44	24,5	31,0	4,5	13500	20000	5,0	9300	TAI100105
26	28,0	52	28,5	32,5	5,5	12000	18000	9,0	13000	TAI200205
30	32,0	63	35,5	38,5	5,5	9800	14700	16,0	13000	TAI100306
35	37,0	56	37,0	42,0	5,0	9500	14000	5,0	8000	TAI100107
45	46,5	83	50,0	54,0	6,0	7100	10600	11,0	4300	TAI100309
70	72,0	115	75,0	80,0	8,5	4700	7000	12,0	2800	TAI100214
72	75,5	128	78,5	83,5	9,0	4500	6700	17,0	2800	TAI100314
75	77,5	125	81,0	86,0	8,5	4400	6600	12,0	2500	TAI100215
80	83,0	130	84,0	90,0	9,0	4200	6300	13,0	2900	TAI100216
93	98,0	150	100,0	106,0	10,0	3600	5400	17,0	2350	TAI100218
105	108,0	150	114,0	119,0	9,0	3300	5000	12,0	2000	TAI100121
110	114,0	160	120,0	125,0	9,0	3100	4600	15,0	2000	TAI100122
110	113,0	190	121,0	126,0	9,5	3000	4500	38,0	5600	TAI100320
110	117,0	190	124,0	129,0	9,5	2900	4300	20,0	1300	TAI100221
120	125,0	170	129,0	134,0	9,0	2900	4300	20,0	3050	TAI100124
130	135,0	200	140,0	146,0	9,5	2600	3900	35,0	4800	TAI100324
130	134,0	190	140,0	146,0	9,5	2600	3900	19,0	1750	TAI100126
140	143,0	200	148,0	154,0	9,5	2500	3700	32,0	2850	TAI100128
150	155,0	270	160,0	167,0	11,0	2200	3300	30,0	2500	TAI100328
150	154,0	215	160,0	166,0	10,0	2300	3400	26,0	2000	TAI100130
160	164,0	230	175,0	181,0	10,0	2100	3100	40,0	2700	TAI100132
170	176,0	250	180,0	186,0	11,0	2050	3000	37,0	1900	TAI100134
220	226,0	328	230,0	240,0	13,0	1550	2300	35,0	2200	TAI100144
240	247,0	348	249,0	257,0	13,0	1500	2250	38,0	1000	TAI100148
285	290,0	360	294,0	298,0	13,0	1300	1950	33,0	1350	TAI100156
330	336,0	420	338,0	344,0	13,0	1100	1650	32,0	1000	TAI100166
380	385,0	460	390,0	398,0	13,0	950	1400	30,0	1100	TAI100176

^{*} Fa = Anpresskraft der Dichtlippe

